Explore GitLab
Discover projects, groups and snippets. Share your projects with others
-
-
中煤项目人员值班接口
-
CrowdHMT Middleware Group, front-end development group
-
CrowdHMT Middleware Group, front-end development group
-
-
-
当今世界,计算机智能化的程度越来越高,而计算机视觉的应用也越来越广泛,从最开始的识别物品到人脸识别的动态观察,计算机能识别的图像越来越复杂化,动态化,模糊化,这都离不开深度学习算法。我们小组使用YOLO模型来训练计算机获得识别飞机的能力,如果飞机能够被迅速而准确的识别将对我们产生巨大的帮助。
-
-
Several baselines for online adaptation of semantic segmentation. Architectures supported: Deeplabv2 with VGG-16, ERFNet, RFNet with Resnet-18 (Updating). Baselines including: BN Adapting, Tent, Pseudo Label, Ground Truth, CoTTA, etc. (Updating).
-
Several baselines for online adaptation of semantic segmentation. Architectures supported: Deeplabv2 with VGG-16, ERFNet, RFNet with Resnet-18 (Updating). Baselines including: BN Adapting, Tent, Pseudo Label, Ground Truth, CoTTA, etc. (Updating).
-
-
-
-
Transport messages or pictures on devices with ros2 installed. It can be between different nodes on the same device or on different devices.
-
-
-
-
-
采用硬件描述语言Verilog HDL完成数字图像识别。数字图像识别在传统处理器上(如CPU、GPU等)得到了非常有效地发展,精确度一度达到100%,这得益于现有深度学习框架提供的成熟神将网络算法,而在如FPGA,ASIC等定制化设备上的深度学习还存在开发周期长,程序语言门槛较高等困难,将深度学习部署在这些终端设备上还有待的发展。该项目是借助Verilog硬件描述语言在FPGA上完成的卷积神经网络对数字图像识别进行识别。